

Secure Map Generation for Multiplayer, Turn-Based Strategy Games

A Thesis

Presented to

the Faculty of the Daniel Felix Ritchie School of Engineering and Computer Science

University of Denver

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Stephen L. Rice

June 2014

Advisor: Chris GauthierDickey

©Copyright by Stephen L. Rice 2014

All Rights Reserved

ii

Author: Stephen L. Rice

Title: Secure Map Generation for Multiplayer, Turn-Based Strategy Games

Advisor: Chris GauthierDickey

Degree Date: June 2014

ABSTRACT

In strategy games, players compete against each other on randomly generated

maps in an attempt to prove their superior skill. Traditionally, these games rely on a

client/server architecture with one player fulfilling the role of server and holding

responsibility for the map generation process. We propose, analyze and evaluate a

method that allows these maps to be created in a peer-to-peer fashion and thus reduce the

potential for cheating. We provide an example map generation program that puts these

concepts into action and demonstrate how it can be extended and customized for any

game. Finally, we analyze the performance of our methods and demonstrate how it can be

scaled from a two player game to an n-player game.

iii

ACKNOWLEDGEMENTS

Stephen Rice would like to thank Chris GauthierDickey for his advice and

assistance throughout the last year of work. He would also like to thank the members of

his Oral Defense Committee for the time and feedback they provided on this paper.

Finally, he would like to thank the faculty and staff of the University of Denver

Computer Science Department for their support.

iv

TABLE OF CONTENTS

Chapter One: Introduction 1

Chapter Two: Background 4

Peer-to-Peer 4

Procedural Content Generation 5

Chapter Three: Algorithms 8

Problem Space 8

Diamond-Square Algorithm 9

Simplex Noise Generation 13

Map Generation 13

Peer-to-Peer Map Generation 16

Chapter Four: Analysis 19

 Experiment Setup 19

 Results 19

Chapter Five: Conclusion and Future Work 22

Bibliography 23

Appendices 25

 Appendix: Source Code 25

v

TABLE OF FIGURES

Figure 1: Sample Grid for the Diamond-Square Algorithm 10

Figure 2: Sample Fractal as generated by the Diamond-Square Algorithm 11

Figure 3: Pseudo-code for the Diamond-Square Algorithm 12

Figure 4: Examples of Perlin Noise in 2D and 3D 13

Figure 5: Layers of our Map Generator 14

Figure 6: Sample Maps as Generated by Our Map Generator 16

Figure 7: Visual Representation of the Random Seed Generation Algorithm 18

Figure 8: Graph of Program Time Observations 20

Figure 9: Table of Program Time Observations 21

1

CHAPTER ONE: INTRODUCTION

Strategy games, such as Sid Meier’s Civilization or Blizzard’s StarCraft, are

defined by their focus on tactics, both in city or base building as well as in conflict

between armies of varying sizes. These games can be played by one player against

computer controlled opponents or can support multiple players competing (and

cooperating) amongst themselves. They can be played in distinct turns (as in traditional

games such as Chess) or take place in real-time. Strategy games vary in length; some can

be finished in under an hour (as many StarCraft games are) and others may take more

than four to five hours (as in Civilization) and can often be played in multiple sessions

(using a save and resume system).

 Most strategy games challenge players in two ways. First, players test their

understanding of the game mechanics against each other by competing for resources,

military power or political influence as they attempt to satisfy one of the game’s victory

conditions. Second, players test their ability to adapt by playing on randomly generated

maps for each new round. These maps can be slight variations on preset terrain (i.e. new

resource locations) or procedurally generated worlds with no predetermined elements.

Often the first act of a player is gather information about the map so that they can

develop their strategy for the rest of the game.

 Traditionally, one player is selected as a host, or server and is responsible both for

generating the map for that game and for acting as a server for networked play. Other

2

players then send their actions and moves to this player and wait for confirmation on how

the game state has been changed. In real-time strategy games, network lag (caused by

packet loss or a low transmission rate) can severely affect the outcome of a game, though

this is less of a concern in turn-based strategy games.

 This server/client set-up is vulnerable to cheating, however, as the hosting player

has the ability to cheat by manipulating the map to his advantage or otherwise interfering

with other players commands. Furthermore, the host player can modify the rules of the

game or change the map to suit their play style.

 In this paper, we propose a method that allows maps to be generated between

players in a peer-to-peer fashion which prevents any one player from gaining an unfair

advantage. No player can have more knowledge of the map than another player at the

start of the game, nor can one player influence the appearance of the game map during

the map generation process. We specifically worked with two common procedural

content generation (PCG) algorithms: the Diamond-Square algorithm originally presented

in Fournier’s et al. Computer Rendering of Stochastic Models [1] and a Simplex Noise

function created by Ken Perlin [2], and demonstrate how the procedure can be used in

other PCG algorithms as well. We demonstrate that, by securely generating a random

value between n players, each player can generate identical maps without affecting the

process.

Chapter 2 of this paper will explore many of the papers that have been written on

peer-to-peer game playing and procedural content generation in the last five years as well

as a few older papers that lay down algorithms still in use today. Chapter 3 will discuss

3

the Diamond-Square algorithm in detail as well as our methodology for securely

generating random numbers between multiple players. It will also lay out a clear

procedure for implementing peer-to-peer map generation from start to finish. Chapter 4

will analyze the Java code constructed as a proof-of-concept and present our conclusions

on the expected cost of the algorithm. Finally, chapter 5 will present our conclusion and

comment on future work to be done in this field. The appendix presents the source code

that is analyzed in chapter 4.

4

CHAPTER TWO: BACKGROUND

When we began our research, we investigated two specific fields: Peer-to-Peer

(P2P) Games and Procedural Content Generation. The former was essential to

understanding how to build and apply P2P concepts to the field of map generation while

the latter was essential to understanding how game maps are generated in modern games.

A. Peer-to-Peer

 In Secure Peer-to-Peer Trading for Multiplayer Games [3], GauthierDickey and

Ritzdorf investigated how to support trading in a multiplayer online game without using a

central server. They began by identifying two goals: that trades can be made fairly and

that items cannot be duplicated (thus violating the spirit of the game). Their system

consisted of a distributed hash table (DHT), which was used to uniquely identify items,

and a method of signing items to provide a proof of transaction. They proved that the

system works for both one-way and two-way trades and demonstrated how it can be

extended to multi-item trades. Though the methods are not strictly related to P2P map

generation, they can be used in a P2P based strategy game (e.g., when players trade

resources amongst themselves).

 The groundwork for our method is laid down in Pittman and GauthierDickey’s

Match+Guardian: A Secure Peer-to-Peer Trading Card Game Protocol [4]. The paper

began by analyzing the three trading card game (TCG) play styles: sealed deck, draft

deck and constructed deck. The paper then broke each of these play styles into a concrete

5

set of actions (such as drawing a card, shuffling a deck of cards, etc.) and provided a

method for securing this step in a P2P game. The core theory behind many of these

techniques is to generate a secure random number between two players such that neither

player can influence what number (or card) is chosen. In this paper, we apply this

technique to procedural content generation algorithms which allows them to be used

fairly in P2P games.

B. Procedural Content Generation

In their paper, Procedural Content Generation for Games: A Survey [5], authors

Hendrikx, et al. noted that the study of Procedural Content Generation in Games had been

widely dispersed over a variety of research areas and that many lacked a common,

unifying base. To rectify this shortcoming, they surveyed existing PCG papers in fields

such as Artificial Intelligence, Pseudo-Random Number Generators or Complex System

Simulations and defined two taxonomies. The first was dedicated to breaking down the

elements of a game into increasingly smaller “bits” which will help researchers

communicate what exactly they are attempting to generate. The second taxonomy was of

various PCG techniques which might be applicable to games. This paper laid down an

excellent framework for understanding and building multiple “layers” of content

generation.

In A Survey of Procedural Terrain Generation Techniques Using Evolutionary

Algorithms [6], Raffe, Zambetta and Li evaluated and compared six known Evolutionary

Algorithms (EA) for the purposes of Procedural Terrain Generation (PTG), specifically

for their use in interactive entertainment. Evolutionary Algorithms enabled the creation of

6

families of generated terrains with varying features that the authors hoped will create

interesting game spaces. Each algorithm was evaluated on a number of factors, including

its refinement (how well does it explore a family of terrains), its variety (how well does it

explore the solution space of terrains), its control (how easy is it for a user to manipulate)

and finally its game integration (how well would it work in a game space). Most of the

algorithms surveyed do improve on a simple fractal terrain but often failed to create

usable game spaces (due to a lack of game integration fitness checks). The one algorithm

that does specifically aim to create Real Time Strategy maps failed to create maps with

any sort of interesting terrain (only rounded hills and ridges are created by the EA). In

their conclusion, the authors reaffirmed their belief that Evolutionary Algorithms can be

used to generate Procedural Terrains for games but that more work is needed to ensure

accurate and useful results.

We explicitly explored the aforementioned paper dealing with real time strategy

maps, titled Multiobjective Exploration of StarCraft Map Space [7]. Togelius et al.,

developed and utilized fitness functions related to gameplay elements to guide the

evolutionary algorithms such that playable and “fun” multiplayer maps are created. The

authors found that selecting proper fitness functions was the key to creating usable maps.

While many of the fitness functions were promising, using more than one or two at a time

caused conflicts that produced undesirable results or had unreasonably long run times.

The authors concluded that more research was needed on creating, combining and

simplifying fitness functions and we thus turned out attention away from evolutionary

algorithms and toward more traditional fractal generators.

7

In their paper, Randomly Generated 3D Environments for Serious Games [8],

Noghani et al. explored a methodology to create a game space for a simple flight

simulator. A Diamond-Square algorithm was used to generate the terrain with additional

pseudo-random algorithms to generate decorations such as vegetation or buildings. They

also explored a variety of methods to create bounding boxes for hit detection though

many users criticized their use of single-axis aligned bounding boxes. Users also did not

notice that terrain was repeated (when encountering the edge of a tile) though this could

be due to the short test time.

The Diamond-Square algorithm was often mentioned during the discussion of

fractal terrain generators and after examining Civilization V’s script files, we decided to

further explore this algorithm. We also looked into Simplex Noise, another method used

in the generation of terrain and random textures. Both of these algorithms will be

investigated in more depth in the next section.

8

CHAPTER THREE: ALGORITHMS

We will begin by discussing our initial analysis of the problem space and the

decisions we made. We will then explain the Diamond-Square algorithm and describe

how a noise generator can be used to create map features such as forests or deserts.

Finally we will demonstrate how we brought these algorithms together to generate maps

and how we developed our secure peer-to-peer system.

A. Problem Space

We first assume that any peer-to-peer game will feature some sort of lobby that

facilitates the creation of a game session and determines details such as map size, sea

level, etc. As such, our procedures and analysis focus solely on the process of map

generation and not on the details of establishing the initial network connection or

agreeing upon match settings (i.e. size of map, ratio of landmass to water).

There are two styles of map generation that can be used in strategy games. The

first is to generate the map before the game begins and the second is to generate the map

during the game. Strategy games often utilize a “fog of war” where players discover the

layout of the world throughout the game and we initially looked to a lazy generation

method to preserve this gameplay element. We quickly realized that lazy generation had a

large drawback that could have an even greater impact on the game. In order to fairly

generate new map “tiles” (or regions), we knew the two players would have to

communicate to ensure fairness. This could give the other player unneeded information

9

that could tip the game in her favor. For example, if Player Alice wanted to attack Player

Bob from the flank in an area she had not previously explored, she would have to

communicate with Bob to generate (or perhaps retrieve) that map tile, which would alert

him that an enemy force was in the area. Though this problem is not proven to be

intractable, we felt it smarter to generate the maps between players before gameplay

began. Though both players would have perfect map knowledge, they would not be

required to reveal sensitive information inadvertently. There is a potential third option as

well that combines both approaches though it would limit the types of gameplay

available. Civilization features a map type where all players start on a single continent

and are encouraged to explore a “New World” continent with no pre-existing players

(thus replicating colonialism). For such a map, it would be possible to generate the

original continent before the game begins but allow players to generate the new continent

in the lazy style. Though this method is promising, we opted to use traditional map

generation algorithms (which are more broadly applicable) as described below.

B. Diamond-Square Algorithm

Fournier and Fussel developed the diamond-square algorithm to create natural-

looking irregular objects and phenomena via stochastic processes [1]. Similar to a method

known as factional Brownian motion, the algorithm generates a 2D or 3D surface by

subdividing a square and randomly adjusting each new point. This process is repeated

until the desired level of detail is achieved. The variation of this algorithm used in our

map generator is described below. Figure 1 shows a labeled grid as might be utilized

10

Figure 1: A sample grid where A-D represent given values and a-e represent values

generated by the Diamond-Square algorithm

during the Diamond-Square algorithm. Given values for the four corner points (labeled

above as A, B C and D), the “square” step of the algorithm will find coordinates for each

midpoint value by averaging the corners to either side of it.

a = A + B / 2

b = A + C / 2

c = B + D / 2

d = C + D / 2

The algorithm then calculates the middle point, by averaging all four corners

together and adding a random value multiplied by a variation value.

e = (A + B + C + D) / 4 + random * variation

11

Figure 2: A sample fractal generated by the Diamond-Square algorithm

It then calls itself recursively on each of the following sub grids with a modified

variance. Note that the change in variance is used to control the “noisiness” of the grid

values.

Grid 1: A, a, b, e

Grid 2: a, B, e, c

Grid 3: b, e, c, d

Grid 4: e, c, d, D

The diamond step is an extra set of calculations that can be done by choosing the values

generated at a, b, c, and d and using them to help generate the value at e. It is used to

reduce the square-shaped artifacting that can be seen in some places in Figure 2. It can

also be used to wrap the map around the edges seamlessly, though this requires an

iterative approach to the algorithm instead of recursive. The algorithm can be set to

12

//Calculates five new midpoints

void sample(x1, y1, x2, y2, variance)
//Ensure that the algorithm ceases once it has

filled the map
if (x2 -- x1 > 1)

//Retrieve the values of the corner points
A = map[x1][y1]
B = map[x2][y1]
C = map[x1][y2]
D = map[x2][y2]

//Calculate the location of the new center

point
newX = x2 + x1 / 2
newY = y2 + y1 /2

//Calculate the new midpoints
map[newX][y1] = (A + B) / 2
map[x1][newY] = (A + C) / 2
map[newX][y2] = (C + D) / 2
map[x2][newY] = (B + D) / 2
map[newX][newY] = (A + B + C + D) / 4 +

random * variance -- variance/2)

//Call on the four subgrids
sample(x1, y1, newX, newY, variance/1.6)
sample(newX, y1, x2, newY, variance/1.6)
sample(x1, newY ,newX, y2, variance/1.6)
sample(newX, newY, x2, y2, variance/1.6)

Figure 3: Pseudo-code for the Diamond-Square Algorithm’s sample function

terminate after a set number of subdivisions or when the size of the sub grid reaches a

point of no-consequence (i.e. an unnoticeable level of detail). We experimented with a

number of variances and factors but settled upon an initial variance of .5 and a reduction

factor of 1.6 during each subdivision. We found that maps with these qualities tended to

have one primary continent with a few smaller islands around its periphery which we felt

13

Figure 4: Four examples of Perlin Noise (2D and 3D) [2]

would make for a satisfactory play space. It terminates when the grid cannot be

subdivided any further. Figure 2 shows a sample fractal map colored via grayscale.

Square artifacting can also be noted in this diagram, particularly in the upper right corner.

Pseudo-code for the core “sample” function can be seen in Figure 3.

We opted to not implement the diamond step of the algorithm in our program as we were

more interested in the general ideas behind the algorithm than any specific improvements

that could be made upon it. Furthermore, we assume a square map size of 2n + 1 as this

simplifies the recursion process immensely. The algorithm can be modified to run on

other map sizes.

14

Figure 5: Layers of the map generator

C. Simplex Noise Generation

Simplex Noise is a refinement of the classic Perlin noise presented by Ken Perlin

and is often used in computer graphics problems [2]. These noise functions give the

appearance of randomness by generating a pseudo-random “surface” (noise can be

generated in multiple dimensions). Given a coordinate, the noise function returns a

“noisy” value which can then be used to generate textures or terrains.

Simplex noise is a process by which multiple noise functions (with varying

amplitudes and frequencies) are combined. This allows for a finer degree of control over

what form the noise takes. Figure 4 shows four sample textures as presented in Perlin’s

paper on Simplex noise.

D. Map Generation

Our map generator has four “layers,” each of which is responsible for building

one portion of the map (see Figure 5). The algorithm design was inspired by the scripting

15

for Civilization V maps which seem to use combinations of distinct functions to build

unique maps (based off a user’s preference for rainfall, sea level, etc.).

The first layer is responsible for generating a grid of double values via the

Diamond-Square algorithm. Each corner was preset to zero which ensured the map was

bounded by water (i.e. a connecting ocean). This would also allow the map to be trivially

wrapped should the user desire it. A brief pass through the grid would calculate the

average, maximum and minimum values which would be used during the next layer.

The Land and Water layer is responsible for converting the grid of double values

into a grid of character values with each cell being either “land” or “water”. This is done

by comparing each double against some factor of the mean; values that are less become

water, values that are greater become land. We converted all values less than the mean

multiplied by 1.5 to water as we found this gave us the best land to water ratio. This value

could be adjusted in either direction to create a world with more or less water, depending

on user preference. We chose not to use the Diamond-Square values for mountainous

terrain as we found that it did not generate the sort of mountain ranges one would expect.

Instead, we imagined mountains would simply be generated by their own specific

algorithm.

The third layer was perhaps the simplest; we simply generate a random value for

each point in the grid and, if it is above some threshold, we designate that cell as an

undefined game “resource.”

The final layer implemented trees and deserts via Simplex noise. Whereas

resources had no natural need for any sort of grouping, both forests and deserts are

16

Figure 6: Four sample maps generated by our program

expected to be distinct geographical regions. Our solution was to use Simplex noise to

generate these smaller regions though other algorithms could be used to the same effect.

We briefly attempted a more complicated algorithm where two noise grids represented

humidity and vegetation. We hoped to use a comparison of the two to generate forests

and deserts (for example, forests would be found in locations with high humidity and

high vegetation) but this approach proved less effective in practice.

17

Figure 6 shows four separate maps as generated by our four layers. Additional

layers could add features such as mountains, ice or polar regions, unique resources (with

varying dispersions) or lakes and rivers. The algorithms could also be tweaked to

generate less world-like maps (for game such as StarCraft which take place on a more

“planar” battlefield) by interpreting the original height points (as generated by the

Diamond-Square algorithm) as mountains and valleys instead of land and water. In

games like Civilization, many of the decisions we made about cut-off points (such as how

much of the planet’s surface is water or how much of the landmass is covered by forests)

would be exposed as levers for players to manipulate.

E. Peer-to-Peer Map Generation

The final step in our work, and the most important, was to investigate how we

could use these algorithms to build maps in a peer-to-peer game. Our goal is to provide a

series of steps such that no player can cheat or otherwise impact the creation of the map

without the other player being aware. The key was to have the players create a fair seed

value which would then be used in the generation of random numbers for the map. If both

players are playing fairly (and using unmodified game software), then the seed will be

provided to identical random number generators and the maps generated will be identical.

If one player intends to cheat, however, they have one major avenue of attack:

they could attempt to influence the seed itself. For this option to work, they must be able

to predict how the seed affects the random number generator’s output (so that they can

“select” a favorable map based on a given seed) and they must be able to unfairly affect

18

Figure 7: The process by which a fair, random seed is generated by Alice and Bob

the seed value. The process for securely generating a random seed between two parties,

Alice and Bob, is as follows.

1. Alice and Bob randomly generate private numbers, which we call IA and IB

respectively.

2. Alice and Bob sign their private numbers. Recall that a digital signature is an

encrypted cryptographically secure hash of a message, i.e., EA(H(IA)) and

EB(H(IB))

3. Alice and Bob transmit this digital signature to each other. Note that this message

does not contain their private numbers, simply the hash of those numbers.

4. Once Alice and Bob have received the signature, they transmit IA and IB to each

other.

19

5. Alice and Bob hash each other’s public numbers and compare them to the original

hash they received. If these hashes match, then Alice and Bob know that the other

has been honest in their choice of seed contribution.

6. Alice and Bob then XOR IA and IB together to create a new random value, kA

which can be used as a random seed.

Because both players must commit to their number before seeing each other’s

public number, they cannot predict what the final XOR’d value will be. Once Alice has

finished generating the map locally, she hashes the map and sends it to Bob. When she

receives Bob’s hash, she compares it to her own. If they do not match, then the game is

aborted as the two players do not have identical maps. Otherwise, gameplay may begin.

A malicious player may possibly generate the correct map (and thus pass the

checks listed above) and then attempt to play on a different map entirely. We assume that

any peer-to-peer game will provide basic cheat protection (such as ensuring that each

player is playing by the game rules) which would expose a scenario such as this (e.g., the

cheating player would appear to be breaking game rules to a non-cheating player on a

different map).

20

CHAPTER FOUR: ANALYSIS

A. Experiment Setup

Our program was developed as a proof-of-concept to showcase the methodology

used, not with the intent to use the maps in any specific game. We developed the program

in Java using Eclipse though we also used Processing as a visualization tool. We used

default Java libraries (specifically the Random and Security libraries) though others could

easily be used in place of these (either due to preference or for security reasons).

We used the TCP protocol for our networking over UDP due to the reliability guarantees

that TCP provides. Our encryption utilized the SHA-512 encryption hash (part of the

SHA-2 family of hash functions) which is proven secure enough for our needs (i.e.

extremely unlikely for an adversary to derive the hashed value within a reasonable time

frame).

All of our testing was done via two machines running Debian 4.6.3-14 with an

Intel(R) Xeon E5405 (running at 2.00GHz) and 24 GB of RAM. Both computers were

connected to the same network which does simplify some of the real world constraints

our program might face. More information on TCP’s performance in real world network

conditions (including issues of Network Address Translation) can be found at [9] and

[10]. All test values were averages recorded over 1000 trials.

21

Figure 8: Average time required to complete the program as a factor of map size (graph)

B. Results

We begin our analysis by summarizing the overall cost to securely generate the

seed and confirm the resulting map. Recall that the seed generation requires each player

to send and receive two messages (the first is the hash of their seed contribution, the

second is the actual number). The map comparison only requires one message, thus each

player must only send and receive a total of six networked messages (send and receive).

This number does not change based on the size of the map but would change should the

procedure be adapted for n players.

Given n players, each player must send and receive 3 messages to each other

player so that they can XOR all n seed contribution values together. This will take 3(n –

1) send messages and 3(n - 1) receive messages. In total, each player sends and receives

O(n) messages though the method will generate O(n2) on the system.

0

500

1000

1500

2000

2500

3000

65 129 257 513 1025 2049

Ti
m

e
(m

s)

Map Size

Avg Message Time Avg Total Time

22

Map Size 65 129 257 513 1025 2049

Message Time (ms) 7 5 5 8 26 123

Total Time (ms) 28 40 74 153 644 2451

Figure 9: Average time required to complete the program as a factor of map size (table)

Figure 8 shows the average time taken for our program to complete, not including

the time spent waiting for or connecting to the other player. The “Total Time” measure

includes the time spent to construct and send messages, create the map and write that map

to a file. The “Message Time” measure only includes the time spent to create, send and

receive messages. Figure 9 shows the same data in a table format.

As expected, increasing the map size quadratically has a similar effect on the time

taken to calculate the map. The required map size for a game depends both on the number

players (more players usually requires a larger map) and the required level of detail for a

basic map. For example, a two player Civilization V (referred to as a “duel” map) is a

paltry 40 x 25 tiles. Even the largest map (for 12 players) is only sized at 128 x 80 tiles.

Our interpreter creates maps with a pixel as a base measurement and thus tend towards

the larger size (the maps displayed in Figure 6 are 513 x 513).

There is also a noticeable increase in the time spent sending and receiving

messages, especially on larger map sizes. This disparity is due to the time it takes to

create the hash of the map (which must be converted into a byte array first). Even in these

cases, however, it is clear that the time it takes to create the map itself is most responsible

for the overall running time.

23

CHAPTER FIVE: CONCLUSION AND FUTURE WORK

In conclusion, we have demonstrated that two players can exchange a random

seed and generate a random map without either player having the ability to influence the

outcome. It is further worth noting that the methods detailed above could also be applied

to other genres of games that rely upon random map generation. Mojang’s Minecraft, for

example, relies exclusively upon a single seed value to generate worlds.

This paper provides the basis for a full peer-to-peer game but further research is

needed into how to secure gameplay elements to prevent or prove when one player is

cheating. Many of the concepts in this paper (and some of the others that have been cited)

could be used to this effect. The ideal end goal would be a game that can be played from

start to finish in a completely distributed fashion with all players knowing that the game

is fair.

24

BIBLIOGRAPHY

[1] A. Fournier, D. Fussell, L. Carpenter, “Computer Rendering of Stochastic Models,”

Communications of the ACM, vol. 25, no. 6, June 1982.

[2] K. Perlin, “Noise Hardware,” In Real-Time Shading SIGGRAPH Course Notes, 2001.

[3] C. GauthierDickey, and C. Ritzdorf, “Secure Peer-to-Peer Trading for Multiplayer

Games,” ACM NetGames, November 2012.

[4] D. Pittman, C. GauthierDickey, “Match+Guardian: A Secure Peer-to-Peer Trading

Card Game Protocol,” “Multimedia Systems, vol. 19, issue 3, pages 303-314, 2013.

[5] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural Content

Generation for Games: A Survey,” ACM Transactions on Multimedia Computing,

Communications and Applications, vol. 9, no. 1, February 2013.

[6] W. Raffe, F. Zambetta, and X. Li, “A Survey of Procedural Terrain Generation

Techniques using Evolutionary Algorithms,” WCCI 2012 IEEE World Congress on

Computation Intelligence, June 2012.

[7] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbӓck, and G. Yannakakis,

“Multiobjective Exploration of the StarCraft Map Space,” 2010 IEEE Conference on

Computation Ingelligence and Games, 2010.

[8] J. Noghani, F. Liarokapis, and E. Falk Anderson, “Randomly Generated 3D

Environments for Serious Games,” 2010 Second International Conference on Games

and Virtual Worlds for Serious Applications, 2010.

25

[9] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP Throughput: A

Simple Model and its Empirical Validation,” SIGCOMM, 1998.

[10] B. Ford, and P. Srisuresh, “Peer-to-Peer Communication Across Network Address

Translators,” 2005 USENIX Annual Technical Conference, 2005.

[11] F. Ji, and W. Deyong, “Design and Implementation of 3-D Terrain Generation

Module in Game,” 2010 3rd International Conference on Advanced Computer Theory

and Engineering, 2010.

[12] D. Ashlock, C. Lee, and C. McGuiness, “Simultaneous Dual Level Creation for

Games,” IEEE Computational intelligence Magazine, pages 25-37, May 2011.

[13] J. Valls-Vargas, S. Ontañón, and J. Zhu, “Towards Story-Based Content

Generation: From Plot-Points to Maps,” IEEE, 2013.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A Scalable

Content-Addressable Network,” SIGCOMM, 2001.

[15] I. Stoica, R. Morris, D. Krager, M. Frans Kaashoek, and H. Balarkishnan, “Chord:

A Scalable Peer-to-peer Lookup Service for Internet Applications,” SIGCOMM, 2001.

26

APPENDIX: SOURCE CODE

/*

 * Stephen Rice

 * P2P Map Generation

 * Created 4/10/2014

 *

 * Main.java: Takes a player number, port number (self), IP Address,

port number (other), map size

 * and seed contribution. Note that the other player's IP address and

port number are not used if

 * "1" is entered as the player number

 *

 */

import java.io.BufferedWriter;

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.FileWriter;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.net.ServerSocket;

import java.net.Socket;

import java.net.UnknownHostException;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.util.Arrays;

public class MapGenP2P {

 public static void main(String[] args) {

//Network Connections

 ServerSocket server = null;

 Socket client = null;

 OutputStream out = null;

 DataOutputStream dos = null;

 InputStream in = null;

 DataInputStream dis = null;

 //Seed Variables

 MessageDigest md = null;

 long SMC_Seed = 0;

 //Expected order of args: Player Number, My Port, IP, Port,

Map Size, Seed Contribution

 if(args.length < 5) {

System.err.println("Error: Expecting Six arguments:

Player Number, Local Port, IP Address, Port, MapSize,

Seed Contribution");

 System.exit(-1);

 }

 //Save user values

 int player = Integer.parseInt(args[0]);

 int myPort = Integer.parseInt(args[1]);

 String ip = args[2];

 int port = Integer.parseInt(args[3]);

27

 int mapSize = Integer.parseInt(args[4]);

 long seed = Long.parseLong(args[5]);

 //Check validity of provided map size

 if((mapSize - 1) % 4 != 0) {

 System.out.println("Map Size must be of the form (2^n)

+ 1");

 System.exit(-1);

 }

 //If Player 1, create a server and wait

 if(player == 1) {

 //Initiate network handshake with other client

 try {

 server = new ServerSocket(myPort);

 //Wait for a client to connect

 while(true) {

 client = server.accept();

 System.out.println("Connected to other

player");

 break;

 }

 }

 catch (IOException e) {

 System.err.println("Exception: Couldn't bind to

port");

 System.exit(-1);

 }

 }

 else {

 //Connect to the server

 try {

 client = new Socket(ip, port);

 System.out.println("Connected to player 1");

 }

 catch (UnknownHostException e) {

 System.err.println("Exception: Unknown Host");

 System.exit(-1);

 }

 catch (IOException e) {

 System.err.println("Exception: Couldn't create

connection to server");

 System.exit(-1);

 }

 }

 //Bind inputs/outputs

 try {

 out = client.getOutputStream();

 dos = new DataOutputStream(out);

 in = client.getInputStream();

 dis = new DataInputStream(in);

 }

 catch(IOException e) {

 System.err.println("Exception: Couldn't capture

Input/Output Streams");

 }

 //Create Hash of seed

28

 byte[] myHash = new byte[Long.SIZE];

 byte[] theirHash = new byte[Long.SIZE];

 long theirSeed = 0;

 try {

 //Create a message digest with SHA-512

 md = MessageDigest.getInstance("SHA-512");

 //Get the bytes of the Long, then encode

 md.update(Long.toString(seed).getBytes());

 myHash = md.digest();

 //Send the hash to the other player

 dos.write(myHash);

 //Wait for reply from other user

 while(true) {

 if(dis.available() > 0) {

 dis.readFully(theirHash);

 break;

 }

 }

 //Send the unhashed integer

 dos.writeLong(seed);

 //Receive their unhashed integer

 while(true) {

 if(dis.available() > 0) {

 theirSeed = dis.readLong();

 break;

 }

 }

 //Check the seed

 md.update(Long.toString(theirSeed).getBytes());

 byte[] testHash = new byte[Long.SIZE];

 byte[] temp = md.digest();

 //Copy into a new array to ensure length parity

 for(int i = 0; i < temp.length; i++) {

 testHash[i] = temp[i];

 }

 //Check if the two hashes are identical

 if(!Arrays.equals(testHash, theirHash)) {

 System.out.println("Their hashed seed does not

match the sent seed");

 System.exit(-1);

 }

 //XOR the seed and save it

 SMC_Seed = seed ^ theirSeed;

 }

 catch (NoSuchAlgorithmException e1) {

 System.out.println("Exception: Cannot find specified

hash");

 }

 catch (IOException e) {

 System.out.println("Error reading message");

 }

29

 //Agree on seed, set seed

 RandomWrapper.setSeed(SMC_Seed);

 SimplexNoise.seedP();

 //Generate the Map and save it in a new variable

 MapGenerator mapGen = new MapGenerator(mapSize);

 char[][] map = mapGen.getMap(true);

 //Convert bytes to map

 byte[] bMap = toBytes(map);

 md.update(bMap);

 byte[] myHashMap = md.digest();

 byte[] theirHashMap = new byte[Long.SIZE];

 try {

 //Send hashed map to client

 dos.write(myHashMap);

 //Wait for reply

 while(true) {

 if(dis.available() > 0)

 {

 dis.readFully(theirHashMap);

 break;

 }

 }

 //Copy my hash into a max size array

 byte[] testHash = new byte[Long.SIZE];

 for(int i = 0; i < myHashMap.length; i++) {

 testHash[i] = myHashMap[i];

 }

 //Compare

 if(!Arrays.equals(testHash, theirHashMap)) {

 System.err.println("The maps do not match.");

 System.exit(-1);

 }

 }

 catch (IOException e) {

 System.out.println("Exception: Comparing hashes");

 }

 //Write the map to a file

 writeMapToFile(map);

 System.out.println("A map was succesfully generated with the

other player");

 System.exit(1);

 }

 public static void writeMapToFile(char[][] map) {

 //Write to file

 try {

 System.out.println("Writing map to file");

 BufferedWriter writer = new BufferedWriter(new

FileWriter("map.txt"));

 for(int i = 0; i < map.length; i++) {

30

 for(int j = 0; j < map[i].length; j++)

 {

 writer.write(map[j][i] + " ");

 }

 writer.write("\n");

 }

 writer.close();

 System.out.println("File written successfully");

 }

 catch (IOException e) {

 System.err.println("Problem writing to file");

 }

 }

 //Convert a character map into a byte array

 public static byte[] toBytes(char[][] map) {

 byte[] bytes = new byte[map.length*map.length];

 for(int i = 0; i < map.length; i++) {

 for(int j = 0; j < map[i].length; j++) {

 bytes[i + j * map.length] = (byte) map[j][i];

 }

 }

 return bytes;

 }

}

/*

 * Stephen Rice

 * P2P Map Generation

 * Created 4/10/2014

 *

 * MapGenerator.java: Given a map size, generates a new random map

 */

public class MapGenerator {

 //Stores the map

 private double[][] map;

 private char[][] cMap;

 //Size of the map

 private int mapDim;

 //Map statistics

 private double largest, smallest, mean;

 //Map Created

 private boolean mapCreated;

 public MapGenerator(int inSize) {

 //Save the provided map size (assume size is checked prior)

 mapDim = inSize;

 mapCreated = false;

 }

 //Generate the Map

 private void generateMap() {

 System.out.println("Map Generator is starting");

 //Create the emtpy maps

31

 map = new double[mapDim][mapDim];

 cMap = new char[mapDim][mapDim];

 //Init corners to 0

 map[0][0] = 0;

 map[mapDim -1][0] = 0;

 map[0][mapDim -1] = 0;

 map[mapDim - 1][mapDim - 1] = 0;

 //Call recursively to sample, providing the 4 corners and a

variance of .5

 sample(0,0, mapDim - 1, mapDim - 1, .5);

 //Calculate the means and maxes

 calculateStatistics();

 //Begin populating the character map

 LandAndWater(1.5);

 Resources();

 TreesAndDesert();

 mapCreated = true;

 System.out.println("Map Generator is finished");

 }

 //Recursive Sample: Takes two corners (A, D) to determine the sub

grid

 private void sample(int x1, int y1, int x2, int y2, double random)

{

 /*

 Capitals: Original corner points

 Lower: New generated points

 A - a - B

 b - c - e

 C - d - D

 */

 //Check to ensure that midpoints exist

 if(x2 - x1 > 1) {

 //Get height maps

 double A = map[x1][y1];

 double B = map[x2][y1];

 double C = map[x1][y2];

 double D = map[x2][y2];

 int newX = (x2+x1) / 2;

 int newY = (y2+y1) / 2;

 //Determine a,b,c,d,e

 map[newX][y1] = (A + B) / 2; //a

 map[x1][newY] = (A + C) / 2; //b

 //Ensure first point is always positive (avoids lake

in middle)

 if(x1 == 0 && x2 == mapDim - 1) {

 map[newX][newY] = (A + B + C + D) / 4 +

(RandomWrapper.getRandom() * random/2); //c

 }

 else {

32

map[newX][newY] = (A + B + C + D) / 4 +

(RandomWrapper.getRandom() * random - random/2

); //c

 }

 map[newX][y2] = (C + D) / 2; //d

 map[x2][newY] = (B + D) / 2; //e

 //Recursively call sub quadrants

 sample(x1,y1,newX, newY, random/1.60); //A-c

 sample(newX, y1, x2, newY, random/1.6); // a-e

 sample(x1, newY, newX, y2, random/1.6); // b-d

 sample(newX, newY, x2, y2, random/1.6);// c-D

 }

 }

 //Calculate the largest, smallest and mean values in the map

 private void calculateStatistics() {

 double large = Integer.MIN_VALUE;

 double small = Integer.MAX_VALUE;

 double sum = 0;

 for(int i = 0; i < mapDim; i++) {

 for(int j = 0; j < mapDim; j++) {

 //Check Largest

 if(map[j][i] > largest) {

 small = map[j][i];

 }

 if(map[j][i] < smallest) {

 large = map[j][i];

 }

 sum += map[j][i];

 }

 }

 largest = large;

 smallest = small;

 mean = sum / (mapDim * mapDim);

 }

 /*These functions scan through the map and generate land, water,

forests, deserts

 * and resources

 *

 * KEY

 * W: Water (< mean)

 * G: Grasslands (default land)

 * F: Forest

 * D: Desert

 */

 //Based on each heighpoint's value, compare to the mean and

 //set land or water. The meanRatio will determine the amount of

land vs. amount of water

 private void LandAndWater(double meanRatio) {

 for(int i = 0; i < map.length; i++) {

 for(int j = 0; j < map[i].length; j++) {

 //Water

 if(map[j][i] < mean * meanRatio) {

33

 cMap[j][i] = 'W';

 }

 //Grasslands

 else {

 cMap[j][i] = 'G';

 }

 }

 }

 }

 //Generates a simplex noise map and creates trees and deserts

 //Note: Simplex noise is very simple and further refinements to

the parameters (or another nosie generator)

 //may provide better results

 private void TreesAndDesert() {

 //Generate the simplex noise seed values

 //SimplexNoise.seedP();

 //Create the simplex noise object

 SimplexNoise sng = new SimplexNoise();

 float[][] humidity = sng.generateOctavedSimplexNoise(mapDim,

mapDim, 2, 2.4f, .04f);

 //Set up desert and trees

 for(int i = 0; i < mapDim; i++) {

 for(int j = 0; j < mapDim; j++) {

 if(humidity[j][i] > .8 && cMap[j][i] == 'G') {

 cMap[j][i] = 'F';

 }

 if(humidity[j][i] < -1.5 && cMap[j][i] == 'G') {

 cMap[j][i] = 'D';

 }

 }

 }

 }

 //Generic Resource Generation. Full map should use specific

resource generators

 //to create the proper distribution

 //Note: This function is also responsible for many of the random

numbers that are generated

 private void Resources() {

 for(int i = 0; i < mapDim; i++) {

 for(int j = 0; j < mapDim; j++) {

 if(RandomWrapper.getRandom() > .9 && cMap[j][i]

== 'G') {

 cMap[j][i] = 'R';

 }

 }

 }

 }

 //Return the map (or generate it if it hasn't been done)

 public char[][] getMap() {

 //If the map has not been created, make it.

 if(!mapCreated) {

 generateMap();

 return cMap;

 }

34

 //Otherwise return the previously generated map

 return cMap;

 }

 //Return the map, allow the user to specify the creation of a new

map, even if the old one has been created

 public char[][] getMap(boolean newMap) {

 //If the user wants a new map, do that no matter what

 if(newMap) {

 generateMap();

 return cMap;

 }

 //Otherwise check if the "old" map exists

 if(!mapCreated) {

 generateMap();

 return cMap;

 }

 //Return the old map

 return cMap;

 }

}

/*

 * Stephen Rice

 * P2P Map Generation

 * Created 4/10/2014

 *

 *RandomWrapper.java: Wraps an RNG and allows a seed to be set

 */

import java.util.Random;

public class RandomWrapper {

 private static long seed;

 private static Random random;

 //Save and set a new seed in the RNG

 public static void setSeed(long inSeed) {

 seed = inSeed;

 random = new Random(seed);

 }

 //Return the current seed

 public static long getSeed() {

 return seed;

 }

 //Return the next random number

 public static double getRandom() {

 return random.nextDouble();

 }

}

/*

 * Stephen Rice

 * P2P Map Generation

 * Created 4/10/2014

 *

35

 * SimplexNoise.java: Simple Simplex Noise generator put together from a

variety of Internet sources

 * The "geenerateDocteabedSimplex Noise" was taken from a post on

http://www.java-gaming.org/topics/generating-2d-perlin-

noise/31637/view.html

 * The noise function itself was taken from

http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf

 *

 * Note: seedP() must be called before calling noise function

 */

public class SimplexNoise {

 private static int grad3[][] = {{1,1,0},{-1,1,0},{1,-1,0},{-1,-

1,0},

 {1,0,1},{-1,0,1},{1,0,-1},{-1,0,-1},

 {0,1,1},{0,-1,1},{0,1,-1},{0,-1,-1}};

 public static int p[] = new int[256];

static{

 for(int i = 0; i < 256; i++) {

 p[i] = (int) (RandomWrapper.getRandom() * 256);

 }

 }

 private static int perm[] = new int[512];

 // This method is a *lot* faster than using (int)Math.floor(x)

 private static int fastfloor(double x) {

 return x>0 ? (int)x : (int)x-1;

 }

 public static void seedP() {

 for(int i = 0; i < 256; i++)

 {

 p[i] = (int) (RandomWrapper.getRandom() * 256);

 }

 for(int i=0; i<512; i++) perm[i]=p[i & 255];

 }

 private static double dot(int g[], double x, double y) {

 return g[0]*x + g[1]*y; }

 private static double dot(int g[], double x, double y,

double z) {

 return g[0]*x + g[1]*y + g[2]*z; }

 private static double dot(int g[], double x, double y,

double z, double w) {

 return g[0]*x + g[1]*y + g[2]*z + g[3]*w; }

 public float[][] generateOctavedSimplexNoise(int width, int

height, int octaves, float roughness, float scale){

 float[][] totalNoise = new float[width][height];

 float layerFrequency = scale;

 float layerWeight = 1;

 float weightSum = 0;

 for (int octave = 0; octave < octaves; octave++) {

 //Calculate single layer/octave of simplex noise, then

add it to total noise

 for(int x = 0; x < width; x++){

 for(int y = 0; y < height; y++){

36

 totalNoise[x][y] += (float) noise(x *

layerFrequency,y * layerFrequency) * layerWeight;

 }

 }

 //Increase variables with each incrementing octave

 layerFrequency *= 2;

 weightSum += layerWeight;

 layerWeight *= roughness;

 }

 return totalNoise;

 }

 public static double noise(double xin, double yin) {

 double n0, n1, n2; // Noise contributions from the three

corners

 // Skew the input space to determine which simplex cell

we're in

 final double F2 = 0.5*(Math.sqrt(3.0)-1.0);

 double s = (xin+yin)*F2; // Hairy factor for 2D

 int i = fastfloor(xin+s);

 int j = fastfloor(yin+s);

 final double G2 = (3.0-Math.sqrt(3.0))/6.0;

 double t = (i+j)*G2;

 double X0 = i-t; // Unskew the cell origin back to (x,y)

space

 double Y0 = j-t;

 double x0 = xin-X0; // The x,y distances from the cell

origin

 double y0 = yin-Y0;

 // For the 2D case, the simplex shape is an equilateral

triangle.

 // Determine which simplex we are in.

 int i1, j1; // Offsets for second (middle) corner of

simplex in (i,j) coords

 if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)-

>(1,0)->(1,1)

 else {i1=0; j1=1;} // upper triangle, YX order: (0,0)-

>(0,1)->(1,1)

 // A step of (1,0) in (i,j) means a step of (1-c,-c) in

(x,y), and

 // a step of (0,1) in (i,j) means a step of (-c,1-c) in

(x,y), where

 // c = (3-sqrt(3))/6

 double x1 = x0 - i1 + G2; // Offsets for middle corner in

(x,y) unskewed coords

 double y1 = y0 - j1 + G2;

 double x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner

in (x,y) unskewed coords

 double y2 = y0 - 1.0 + 2.0 * G2;

 // Work out the hashed gradient indices of the three

simplex corners

 int ii = i & 255;

 int jj = j & 255;

 int gi0 = perm[ii+perm[jj]] % 12;

 int gi1 = perm[ii+i1+perm[jj+j1]] % 12;

 int gi2 = perm[ii+1+perm[jj+1]] % 12;

 // Calculate the contribution from the three corners

 double t0 = 0.5 - x0*x0-y0*y0;

 if(t0<0) n0 = 0.0;

 else {

37

 t0 *= t0;

 n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3

used for 2D gradient

 }

 double t1 = 0.5 - x1*x1-y1*y1;

 if(t1<0) n1 = 0.0;

 else {

 t1 *= t1;

 n1 = t1 * t1 * dot(grad3[gi1], x1, y1);

 } double t2 = 0.5 - x2*x2-y2*y2;

 if(t2<0) n2 = 0.0;

 else {

 t2 *= t2;

 n2 = t2 * t2 * dot(grad3[gi2], x2, y2);

 }

 // Add contributions from each corner to get the final

noise value.

 // The result is scaled to return values in the interval [-

1,1].

 return 70.0 * (n0 + n1 + n2);

 }

}

